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ABSTRACT

We summarize some recent results on modeling and control
of ground vehicles navigating in high-speed over rough ter-
rain. We start with the modeling of expert race (rally) driv-
ing techniques, and we then propose a new graph-search
method to bridge the gap between the path-planning and
trajectory generation layers in the motion planning control
hierarchy. The latter result is of independent theoretical
interest, as it can be applied to any graph search problem
when transitions between the nodes of the graph depend on
the prior history of the path.

1. INTRODUCTION

Reducing the risk for human lives while operating in a haz-
ardous or hostile environment has led to the development
of unmanned, autonomous and semi-autonomous vehicles
for both commercial and military applications. A typical
military mission involves driving the vehicle from point A
to point B, avoiding any obstacles, while minimizing the
exposure to danger; see Fig. 1. In general, this involves
driving with maximum velocity.
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B

Fig. 1: A typical military mission involves an autonomous ve-
hicle entering a hazardous area, while avoiding obstacles and/or
minimizing its exposure to enemy threats and countermeasures.

Achieving autonomous operation in an open, unknown,
unstructured terrain, while minimizing time still remains a
major challenge in the development of land vehicles. This
is due to the uncertainty of the environment the vehicle op-
erates in, the poor characterization of the complex physics

at the interface between the wheels and the ground, the dy-
namics of the vehicle itself, and the overall integration of
the vehicle’s control algorithm with the information gath-
ered from the onboard sensors. Autonomous driving of
wheeled vehicles at high speed, in particular, adds a new
level of complexity due to the time constraints imposed by
the small reaction times and the nonlinear characteristics of
the vehicle at those extreme regimes.

The emphasis on high-speed is motivated by the advan-
tages in terms of reaction time, minimization of exposure to
danger for vehicles operating in enemy territory, increase of
supply line capacity, reduction in delivery time of materiel,
etc (Fig. 2(a)). We should also mention the fact, confirmed
by several Army studies, that the difficulty of successfully
engaging and hitting a target increases disproportionately
with the target speed (Fig. 2(b)). In summary, increasing
the speed of a vehicle has a an immediate and positive cor-
relation on the success of its mission.
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(a) Convoys throughout can be in-
creased with vehicle speed.
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(b) Success of hitting a target de-
creases with target speed.

Fig. 2: A safe increase of the vehicle’s operating speed will lead
to increase convoy speed and an decrease in successful ambush
attacks.

In this paper we summarize several recent results we
have developed over the past couple of years on the path
planning and motion planning problem for ground vehi-
cles navigating in an environment full of obstacles at high
speed. At the core of our approach is the modeling of ex-
pert human race driving techniques. Indeed, the fastest
off-road vehicles can be found in open country rally-cross
racing. Rally racing requires a great deal of practice and
skill (Frere 1992; Jenkinson 1959). Rally race drivers op-
erate the vehicle at the limits of its handling capacity with
very slim safety margins. They induce oversteer and skid-
ding through corners to optimize their trajectory and pre-
pare the vehicle for the next maneuver; see Fig. 3.
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Fig. 3: Race drivers often deliberately induce skidding in corners
to minimize reaction time and reorient the vehicle correctly for
the next maneuver.

At the level of the vehicle dynamics, when a vehicle op-
erates at high speed and over rough terrain, the common
non-slipping conditions are no longer valid. We have used
saturated friction models, which take into consideration the
possibility of the wheel’s reduced or complete loss of adhe-
sion with the ground (Canudas de Wit et al. 2003; Tsiotras
et al. 2004; Velenis et al. 2005). Furthermore, high-speed
driving, and rally racing in particular, incorporates several
specialized techniques (e.g., power oversteer, Kansei drift,
braking and feint drift, pendulum turn, clutch kick, hand-
brake drift, etc.) which are non-common during everyday
driving. The study of these techniques, their understand-
ing, and their consistent reproduction is also of prime im-
portance in this context.

At the path and motion planning levels, several of
the currently available path-planning algorithms for au-
tonomous vehicles (cf. (LaValle and Kuffner 2001), (Hsu
et al. 2002), (Frazzoli et al. 2002)) are tailored towards the
high-end of the unmanned vehicle spectrum. Smaller-scale,
low-cost vehicles may not have the on-board resources to
implement some of the sophisticated algorithms available
in the literature. Intelligent path planners for these vehi-
cles need to explicitly address the constraints imposed by
the hardware in a consistent manner and as early on in the
control design process as possible. In Section 3 we propose
a computationally efficient method to incorporate kinody-
namic constraints, imposed on the motion-planning prob-
lem by the vehicle dynamics and the environment. Along
with the multi-resolution path planner proposed in (Tsio-
tras and Bakolas 2007; Cowlagi and Tsiotras 2008, 2007;
Bakolas and Tsiotras 2008), these results constitute a com-
putationally efficient overall architecture for path planning
and motion planning for ground vehicles operating in high
speed.

2. MODELING EXPERT RALLY DRIVING
TECHNIQUES

In this section by presenting empirical information on
Trail-Braking, one of the commonly used rally racing ma-
neuvers. Trail-Braking is a technique used by rally drivers
to negotiate single corners at high speeds (O’Neil 2006a).
Typically, an average/novice driver negotiates a corner by
first braking to regulate the speed, then by releasing the

brakes and steering the vehicle along the corner, and finally
by accelerating after the exit of the corner. In Trail-Braking
deceleration of the vehicle by braking continues even af-
ter steering has commenced. It is used when the approach
speed to the corner is high. An example of the steering
and throttle/braking trail-braking commands to negotiate a
90 deg left corner as shown in Fig. 4.

Fig. 4: Empirical description of the Trail-Braking maneuver;
from (O’Neil 2006b).

2.1 Minimum-Time Cornering

We have shown (Velenis et al. 2007b,a, 2008) that a TB
maneuver can the reproduced as the result of a minimum-
time cornering problem subject to certain endpoint bound-
ary conditions. The vehicle model used is a standard
single-track vehicle model that includes load transfer ef-
fects. Load transfer (owing to inertia effects during acceler-
ation and deceleration) are crucial when maneuvering over
a surface with reduced friction, and cannot be neglected.
The model is summarized in the equations below

mẍ = fFx cos(ψ +δ )− fFy sin(ψ +δ )
+ fRx cosψ− fRy sinψ (1)

mÿ = fFx sin(ψ +δ )+ fFy cos(ψ +δ )
+ fRx sinψ + fRy cosψ (2)

Izψ̈ = ( fFy cosδ + fFx sinδ )�F − fRy�R (3)
IF ω̇F = TF − fFxr (4)
IRω̇R = TR − fRxr, (5)

where the tire forces are computed from fi j = fizμi j (i =
F,R, j = x,y), where fiz is the normal load at each of the
front and rear axles, and μi j is the longitudinal and lateral
friction coefficients of the front and rear tires. The friction
coefficients μi j can be calculated using, for instance, Pace-
jka’s Magic formula (Bakker et al. 1987), normalized by
the corresponding axle normal load fiz.

The front and rear axle normal loads, including the load



transfer effect, are given by

fFz =
�Rmg−hmgμRx

L+h(μFx cosδ −μFy sinδ −μRx)
, (6)

fRz = mg− fFz, (7)

where L = �F +�R and h is the vertical distance of the center
of mass of the vehicle from the ground.

By applying optimal control theory and imposing that
the vehicle completes all turning before exiting the corner,
we obtain the trajectory shown in Fig. 5. The vehicle in-
duces large slip angles in order to initiate turning about its
yaw axis early on, and complete all turning while still in-
side the corner (Fig. 6(b)). The strategy is quite different
than neutral steering that tends to keep the vehicle slip an-
gle small (dash-dot line in Fig. 6(b)).
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Fig. 5: Trail-Braking cornering: vehicle trajectory from numeri-
cal optimization.
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Fig. 6: Velocity and sideslip angle histories for a Trail-Braking
maneuver; results from numerical optimization.

The results from the optimization have allowed us to in-
troduce a simple parameterization of the control inputs that
simplifies considerably the problem. The parameterization
uses specific time instances to switch between constant or
linear functions for the steering and throttle/braking com-
mands as shown in Fig. 7. These input parameterization
criteria are valid for a wide range of corner geometries; see
Fig. 8.

The previous results have been validated against a high-
fidelity vehicle model (CarSim) including all four wheels,
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Fig. 7: Parameterized steering, braking and throttle inputs for
Trail-Braking.

suspension dynamics etc. The optimization criterion used
during this step is given by

Ĵ = Wt t f +Wr er +Wd ed(t f )+Wψ eψ(t f )
+Wv ev(t f )+Wy ey(t f ),

(8)

where, t f is the final time, er =∑N
k=1 er(tk) is the cumulative

absolute value of the position error from the road limits,
ed(t f ) is the absolute value of the lateral deviation of the ve-
hicle from the inner limit of the road at t f , eψ(t f ) is the final
absolute orientation error, ev(t f ) is the final absolute lateral
velocity of the vehicle, and ey(t f ) is the final absolute yaw
rate error of the vehicle. The weights Wi (i = t,c,d,ψ,v,y)
are used for non-dimensionalization and to adjust the rel-
ative significance between the terms in the right-hand-side
of (8). The results of these high-fidelity simulations, and
for different corner geometries, are shown in Fig. 9.

3. KINODYNAMIC MOTION PLANNING

The exact solution of the path-planning problem in an un-
structured, dynamically changing environment is known to
be computationally intractable (in the language of algorith-
mic complexity it is “NP-hard”). In other words, the on-
line computation of optimal, safe, collision-free paths (and
the corresponding trajectories) constitutes an insurmount-
able undertaking with current computer technology.

To tackle the computational complexity, in the literature
the problem is typically decomposed into two sequential
steps, namely, the path-generation step, followed by the
trajectory-generation step. During the first step a path from
a given initial point to a given destination in the environ-
ment is computed, such that the path does not intersect any
obstacles. In the second step, a time parameterization along
the path yields a trajectory that must be followed by the
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Fig. 8: Optimal trajectory through 60, 90, 135, and 180deg cor-
ners; results from numerical optimization.

vehicle. During the last step, the trajectory needs to obey
the constraints imposed by the associated vehicle dynam-
ics, while also minimizing a certain cost function, e.g. time
of travel. The computation of a suitable trajectory from the
starting point to the goal destination is called the motion
planning problem.

The previous decomposition of the motion planning
problem to a path planning problem followed by a suitable
time parameterization is somewhat artificial. Nonetheless,
the approach is popular in practice since its use simplifies
the overall problem. Apart from the obvious lack of op-
timality, this approach of solving separately the geometric
and dynamic parts of the problem, may also lead to dynam-
ically infeasible paths. The reason being that the geometric
path planner has no prior knowledge of the dynamic limi-
tations of the vehicle. If we want to ensure that the over-
all scheme will always generate feasible paths, we have to
bridge the gap between the geometric and dynamic layers.
This can only be achieved if certain information about the
dynamic envelope of the vehicle is passed on to the path
planner (dashed-line in Fig. 10).

In this section we describe a new scheme to include
information about the class of dynamically feasible paths
early on (viz at the geometric layer). Furthermore, we do
this in an numerically efficient manner that is based on a
non-trivial modification of Dijkstra’s algorithm for the so-
lution of shortest-path problems on graphs. In that sense,
our algorithm is of more general interest than just vehicle
path/motion planning. It can be used to search for shortest

(a) 60deg (c) 135deg

(b) 90deg (d) 180deg

Fig. 9: Trail-Braking through the 60, 90, 135, and 180deg cor-
ners; results of high-fidelity model validation.
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Fig. 10: The traditional control hierarchy for solving robot navi-
gation problems (solid arrows). The second layer is typically the
most difficult one as it needs to consider the full nonlinear dy-
namics of the vehicle. Better performance can be achieved by
coupling the path-planning and motion-planning (feasible trajec-
tory generation) layers, perhaps via the vehicle’s modalities.

paths on a graph whenever the node transitions depend on
the prior history of visited nodes.

3.1 Capturing Curvature Information

Current path planning algorithms based on cell decomposi-
tions of the obstacle-free space work exceedingly well for
generating paths when no kinematic or dynamic constraints
are present. A survey of path planning algorithms can be
found in (Latombe 1991; LaValle 2006). However, the mo-
tion of the actual vehicle must obey such constraints. For
instance, a vehicle always has a certain minimum turn ra-
dius rmin (Fig. 11). A path whose curvature does not satisfy
this curvature constraint cannot be followed by the vehicle
even at very low speeds. Driving a high-speed adds addi-
tional restrictions on the allowable, feasible paths. Without
additional assumptions, there is no guarantee that a feasible
trajectory satisfying these constraints will even exist within
the channel of cells computed by a (purely geometric) path
planner.

At first glance, one may argue that this is only an arti-
fact of an inappropriate choice of the edge cost function
in the associated graph representing the environment and
the obstacles. Below we provide a counter-example to this
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Fig. 11: A vehicle has a minimum turn radius. A path plan-
ning algorithm needs to take this information into consideration.
Most path planning algorithms do not do that, leading to infea-
sible paths and, subsequently, to poor trajectory tracking perfor-
mance.
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Fig. 12: Counterexample for path planning without kinematic
constraint.

argument.

Consider the path planning problem depicted in Fig. 12,
where S denotes the initial position, G denotes the goal, and
the dark areas are obstacles. Consider two vehicles A and B,
whose minimum radii of turn are kinematically constrained
by rA

min and rB
min respectively, such that rA

min ≤ � and rB
min >

�. Clearly, the dashed path in Fig. 12 is feasible for vehicle
A, but not for vehicle B. A path planning algorithm for B
ought to result in the bold path shown in Fig. 12.

Figure 13 depicts the same problem with a uniform cell
decomposition. The channel containing the dashed path of
Fig. 12 is denoted by cells with bold outlines. Such a chan-
nel is obviously not traversable by vehicle B. However,
notice that no pair of successive cells is by itself infeasible,
i.e., a channel defined by two successive cells alone always
contains a feasible path. Stated differently, for any two ad-
jacent cells, there is no cell-dependent property associated
with the two adjacent cells that can be penalized by an edge
cost function in order to prevent the graph search from gen-
erating a channel such as the one shown in Fig. 13(a).

It may be further argued that a feasible path is guaran-
teed to exist in any channel if the dimensions of the cells
are large enough. Indeed, in (Bereg and Kirkpatrick 2005)
it is shown that a curvature-bounded path with local cur-

S

G

(a)

S

G

(b)

Fig. 13: (a) No pair of successive cells is by itself infeasible; (b)
Cells are too large, all cells are MIXED.

vature less than or equal to 1/rmin exists in a polygonal
channel if the width w of the channel satisfies the inequal-
ity w ≥ τrmin, where τ satisfies a certain polynomial equa-
tion. The above counter-example also serves to illustrate
that such a choice of cells may be too restrictive in prac-
tice. Figure 13(b) illustrates that the dimensions of the cells
may be too large to capture details of the environment, i.e.,
the number of MIXED cells could be too large for the cell
decomposition to be useful for path planning.

3.2 Working with Multiple Cells

In this paper, we propose the following approach to plan
a path using cell decompositions, while incorporating path
curvature information: On the topological graph associated
with a given cell decomposition, we define a cost function
based on k−tuples (i.e., histories) of nodes, for some fixed
k > 2, such that the elements of each k−tuple are pairwise
adjacent. The question of feasibility of traversal through
k−tuples of cells (rather than traversal through two suc-
cessive cells only) allows for more general definitions of
“edge” cost functions. In particular, we can introduce suit-
able costs that capture the maximum approximate curvature
for any path lying inside the channel. As a result, we can
ensure that a feasible trajectory will always exist inside the
computed channel of cells at the geometric, path-planning
layer, even before invoking the motion-planning task.

3.3 Algorithm For History-Based Search

Next, we briefly describe an algorithm for searching for
optimal paths in graphs with a history-based cost function.
A rigorous description, along with analytical results on the
optimality and performance of the algorithm, is given in
(Cowlagi and Tsiotras 2009).

Consider a uniform cell decomposition Cd consisting of
N cells. We may construct a graph G ≡ (V ,E ), such that
each element in the set of nodes V corresponds to a unique,
obstacle-free cell. We label the nodes as 1,2, . . . ,N. Two
nodes are adjacent if the corresponding cells are geometri-
cally adjacent1. The edge set E consists of all pairs (i, j),
i, j ∈ V with nodes i and j adjacent. We now describe two
path planning problems on graph G associated with Cd .

Let g(·) be an edge cost function defined for each pair

1We consider 4-connectivity for this work, that is, cells that have two
vertices in common are said to be adjacent.



of adjacent nodes in G . For a given H ≥ 1, let g̃H+1(·) be
cost function with each sequence of nodes of length H +2,
in which pairs of successive nodes are adjacent. For given
initial and terminal nodes iS, iG ∈ V , an admissible path
π ≡ ( jπ0 , jπ1 , . . . , jπP) in G is a sequence of nodes in which
all pairs of successive nodes are adjacent.

Problem 1. Let the cost of an admissible path π be

J(π) =
P

∑
k=1

g(( jπk−1, jπk )). (9)

Find an admissible path π∗ in G such that J(π∗)≤ J(π) for
every admissible path π in G .

Problem 2. Let the cost associated with π be

J̃ (π) =
P

∑
k=H+1

g̃H+1 (( jk−H−1, jk−H , . . . , jk)) . (10)

Find an admissible path π∗ in G such that J̃ (π∗)≤ J̃ (π)
for every admissible path π in G .

Problem 1 is the usual graph search problem associated
with a cell decomposition. A class of algorithms used to
solve Problem 1 are the label correcting algorithms. A la-
bel correcting algorithm progressively searches for the least
cost path starting from iS and ending at node i ∈ V , by it-
eratively reducing an estimate d(i) of the least cost to i,
called the label of the node i. The algorithm also maintains
a list of nodes, called the OPEN list, whose labels can po-
tentially be reduced from their current value, as well as a
backpointer b(i), which records the immediate predecessor
of each node i ∈ V in the optimal path from iS to i. De-
tailed descriptions of the general label correcting algorithm
and particular examples, such as the Bellman-Ford, Dijk-
stra, and A∗ algorithms, may be found in (Bertsekas 2000),
(Cormen et al. 2001) and (LaValle 2006).

On the other hand, Problem 2 encapsulates the history-
based search that we would like to perform. The simplest
example of g̃H+1 is a binary cost function, i.e., one which
classifies a H +2-history of cells as “good” (low value) or
“bad” (high value). Figure 14 illustrates histories (unique
up to translation, rotation, and reflection operations) that
may be classified as “good” for H = 3 .

The proposed algorithm to solve Problem 2 is an exten-
sion of the standard label correcting algorithm described
above. While a formal description of the proposed algo-
rithm may be found in (Cowlagi and Tsiotras 2009), the pri-
mary idea is that of recording multiple histories (of length
H + 1) of each node , and, consequently, multiple labels.
The multiple histories in the proposed algorithm replace
the backpointer of the standard label correcting algorithm.
Figure 15 illustrates this idea.

Suppose that the node being processed at a particular in-
stant during the execution of the algorithm corresponds to
the cell with the bold, dark outline in Fig. 15(a). Suppose
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Fig. 14: Illustration of tiles of “good” histories for H = 3

(a) (b)

Fig. 15: Idea of recording multiple histories.

that the cost function under consideration is the binary cost
function introduced above, with H = 3, such that the histo-
ries shown in Fig. 14 have low cost. Next, assume that the
cost of the channel containing the bold path in Fig. 15(a)
has a slightly lower cost than that of the channel containing
the dotted path. Figure 15(b) shows the next iteration of
the algorithm, where the new bold cell corresponds to the
node being processed. Clearly, the channel containing the
bold path has a high cost, while the channel containing the
dotted path has a low cost. However, if the algorithm had
discarded the channel with the dotted path in the earlier iter-
ation, then in the next iteration, it would have been “stuck”
with the channel containing the bold path, thus incurring
a high cost despite a low cost alternative being available.
To avoid such situations, the proposed algorithm records
all histories of a given, finite length, and maintains labels
for each of those histories. When a particular node is pro-
cessed, its label is computed using all histories and labels
of its predecessors, thus ensuring that no history is “forgot-
ten”.

Figure 16 shows the application of the proposed algo-
rithm to the motivating problem of Fig. 12, using the bi-
nary cost function discussed before. The channel of cells
marked in red is the result of the proposed algorithm, while
the channel marked in blue is the result of performing a
standard graph search on G using a cost defined on the
edge set only (H = 0). The corresponding geometric paths



of minimum possible curvature inside the channels are also
shown in the same figure. The red curve is longer of course,
but it has lower maximum curvature.

Fig. 16: The example of Fig. 12 solved using the proposed algo-
rithm.

Figure 17 shows a more interesting example, where the
environment is cluttered with randomly distributed obsta-
cles. As before, the channel consisting of red cells is the
result of the proposed algorithm, whereas the channel con-
sisting of cells marked in blue is the result of perform-
ing a standard graph search. The corresponding geomet-
ric paths of minimum possible curvature inside the chan-
nels are also shown in the same figure. Most interestingly,
Fig. 17(b) shows the corresponding optimal velocity profile
from the solution of the minimum-time problem along each
path (Velenis and Tsiotras 2008). Although the red path is
longer, a vehicle following this path will take less time than
a vehicle following the shorter (but with more and sharper
turns) blue path. This example demonstrates the benefits
of the proposed algorithm for the solution motion planning
problems.
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Fig. 17: Example of a cluttered environment.

In closing, it is worth-mentioning that it is easy to extend
the proposed algorithm to search for an optimal channel as
well as for a kinodynamically feasible path lying within
that channel at the same time. Figure 18 shows simulation

results of the application of such an extension to the gener-
ation of paths with maximum curvature 1/rmin, for a given
rmin. Note that, unlike the results in Fig. 16, the search for
the optimal channel and construction of a geometric path
within that channel was done simultaneously in the case of
Fig. 18.

(a) rmin = 3.0 (b) rmin = 3.5

(c) rmin = 4.0 (d) rmin = 5.0

Fig. 18: Resultant channels and trajectories for different curva-
ture bounds. The cell marked in blue is the start cell. The envi-
ronment is similar to that in the motivating example of Fig. 12.
Channels and trajectories computed simultaneously.

CONCLUSIONS

We present recent results on the problem of path and tra-
jectory generation for high-speed vehicles. In the first part
of the paper we present a mathematical formalism that uses
optimal control theory to generate trail-braking, high-speed
maneuvers for a large variety of corner geometries. In the
second part of the paper we propose a new algorithm for
path planning that takes into account the kinodynamic con-
straints imposed by the vehicle dynamics and or the en-
vironment. The algorithm can be used in cases when the
computational resources on-board the vehicle are limited.
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